Mittlere Schwingungsamplituden für ein $X(YZ)_2$ -Molekülmodell mit C_{2v} -Symmetrie: Anwendung auf die Moleküle B_2O_3 , B_2S_3 und $S(CN)_2^*$

Von

G. Nagarajan, James R. Durig und A. Perumal** Department of Chemistry, University of South Carolina, Columbia, South Carolina, USA

Mit 1 Abbildung

(Eingegangen am 16. Juli 1968)

Auf Grund von Symmetrieüberlegungen wird eine Methode zur Bestimmung der mittleren Amplitudenquadrate der Schwingungen eines $X(YZ)_2$ -Molekülmodells mit C_{2y} Symmetrie entwikkelt. Es werden analytische Ausdrücke für die verschiedenen mittleren Amplitudenquadrate in Termen der symmetrisierten Matrizen der mittleren Amplitudenquadrate erhalten. Die Methode wird auf die Moleküle B₂O₃, B₂S₃ und S(CN)₂ angewendet. Es werden die mittleren Amplitudenquadrate und die mittleren Schwingungsamplituden bei Zimmertemperatur für gebundene und nichtgebundene Atompaare aus den beobachteten Ramanund Infrarotgrundschwingungen sowie den Daten der Molekülstruktur berechnet. Die chemische Bedeutung der beiden verschiedenen charakteristischen Bindungen im Zusammenhang mit anderen Molekülen mit ähnlichen Bindungsverhältnissen wird kurz besprochen. Weiters werden die molaren thermodynamischen Funktionen für das Schwefeldicyanidmolekül im Temperaturbereich von 200 bis 2000° K unter Annahme eines starren Rotator- und harmonischer Oszillator-Modells berechnet.

Mean Amplitudes of Vibration for an $X(YZ)_2$ Molecule with $C_{2\nu}$ Symmetry: Application to B_2O_3 , B_2S_3 and $S(CN)_2$

On the basis of symmetry considerations a method has been developed for the determination of the mean-square amplitudes of vibration for an $X(YZ)_2$ molecular model with a C_{2v} symmetry.

* Diese Arbeit wurde durch das Stipendium NGR-41-002-003 der National Aeronautics and Space Administration unterstützt.

^{**} Department of Physics, Allen University, Columbia, South Carolina, USA.

Analytical expressions for the various mean-square amplitude quantities in terms of the symmetrized mean-square amplitude matrices have been obtained. The method has been applied to the B_2O_3 , B_2S_3 , and $S(CN)_2$ molecules and mean-square amplitude quantities and mean amplitudes of vibration for both bonded and nonbonded atom pairs have been computed at room temperature from the observed Raman and infrared fundamental frequencies as well as molecular structural data. A brief discussion of the results on the chemical significance of the two different characteristic bonds has been made in relation to other molecules having similar chemical bonds. Molar thermodynamic functions for the temperature range 200—2000° K have also been computed for the sulphur dicyanide molecule on the assumption of a rigid rotator, harmonic oscillator model.

Für Moleküle und Ionen des Typs $X(YZ)_2$ gibt es, allgemein gesprochen, zwei verschiedene Arten von Modellen, nämlich die linearsymmetrische Anordnung Z-Y-X-Y-Z mit der Symmetriepunktgruppe $D_{\alpha h}$ und eine abgewinkelte (wasserartige) symmetrische Anordnung der Symmetriepunktgruppe C_{2v}. Für die Moleküle der ersten Art wurde bereits eine Theorie zur Bestimmung der mittleren Schwingungsamplituden aus spektroskopischen Daten entwickelt und für einige wenige Ionen und auch für ein Molekül angewendet¹. Das Ziel der vorliegenden Arbeit ist, eine Methode zur Berechnung der mittleren Schwingungsamplituden für die zweite Art von Molekülen auf Grund von Symmetrieüberlegungen zu entwickeln, sie auf die Moleküle B2O3, B2S3 und S(CN)2 unter Zuhilfenahme neuerer Daten der Schwingungen und des Molekülaufbaus anzuwenden und danach die molaren thermodynamischen Funktionen für das Schwefeldievanidmolekül zu berechnen. Die Ergebnisse dieser Untersuchungen sollten sehr nützlich sein für die Interpretation der Ergebnisse von Elektronenbeugungsversuchen, für die Berechnung der Normalschwingungen in anderen, verwandten Molekülen mit gleichen chemischen Bindungsverhältnissen und für die Interpretation der experimentellen Ergebnisse für die Entropien und Wärmekapazitäten im idealen Gaszustand.

Mittlere Schwingungsamplituden

Aus Symmetrieüberlegungen² folgt, daß ein Molekül des Typs $X(YZ)_2$ mit einer gewinkelten symmetrischen Anordnung und der Symmetriepunktgruppe C_{2v} neun Schwingungsfreiheitsgrade besitzt, die nur neun Grundschwingungen verursachen, die folgendermaßen auf die verschiedenen irreduziblen Darstellungen verteilt sind: $4A_1 + A_2 + 3B_1 + B_2$. Die vier Grundschwingungen v_1 , v_2 , v_3 und v_4 der Schwingungsrasse A_1 entsprechen einer symmetrischen X-Y-Valenzschwingung, einer sym-

¹ G. Nagarajan, Indian J. Phys. 40, 319 (1966).

² G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules", D. Van Nostrand, New York (1960).

H. 1/1969] Schwingungsamplituden für ein $X(YZ)_2$ -Molekülmodell 181

metrischen Y---Z-Valenzschwingung, einer Y--- \widehat{X} --Y-Deformationsschwingung in der Ebene und einer symmetrischen X-- \widehat{Y} ---Z-Deformationsschwingung in der Ebene. v_5 der Schwingungsrasse A₂ entspricht einer asymmetrischen Schwingung aus der Ebene, v_6 , v_7 und v_8 der Schwingungsrasse B₁ entsprechen einer asymmetrischen X---Y-Valenz-

Abb. 1. Geometrische Darstellung der Internen Koordinaten für ein $X(YZ)_2$ -Molekularmodell mit C_{2v} -Symmetrie. Die Symbole bedeuten die Abweichungen von den Werten bei der Gleichgewichtskonfiguration

schwingung, einer asymmetrischen Y—Z-Deformationsschwingung und einer asymmetrischen X— \widehat{Y} —Z-Deformationsschwingung in der Ebene. v9 der Schwingungsrasse B₂ schließlich entspricht einer symmetrischen Schwingung aus der Ebene. Alle Schwingungen sind sowohl Ramanals IR-aktiv, außer denen der Schwingungsrasse A₂, die nur Ramanaktiv sind. Zur Beschreibung der zwölf Schwingungsfreiheitsgrade (Abb. 1) wurden zwölf interne Koordinaten eingeführt, mit deren Hilfe folgender Satz von Symmetriekoordinaten konstruiert wurde, die den Bedingungen der Normalisierung, der Orthogonalität und der Transformationen der betrachteten Schwingungsrassen genügen:

$$\begin{split} &\mathbf{S_1}(\mathbf{A_1}) = (r_1 + r_2) / \sqrt{2} \\ &\mathbf{S_2}(\mathbf{A_1}) = (d_1 + d_2) / \sqrt{2} \\ &\mathbf{S_3}(\mathbf{A_1}) = R \, \theta \\ &\mathbf{S_4}(\mathbf{A_1}) = \sqrt{RD} \, (\phi_1 + \phi_2) / \sqrt{2} \\ &\mathbf{S_5}(\mathbf{A_2}) = \sqrt{RD} \, (\alpha_1 - \alpha_2) / \sqrt{2} \end{split}$$

$$\begin{split} \mathbf{S}_{6}(\mathbf{B}_{1}) &= (r_{1} - r_{2})/\sqrt{2} \\ \mathbf{S}_{7}(\mathbf{B}_{1}) &= (d_{1} - d_{2})/\sqrt{2} \\ \mathbf{S}_{8}(\mathbf{B}_{1}) &= \sqrt{RD} \; (\phi_{1} - \phi_{2})/\sqrt{2} \\ \mathbf{S}_{9}(\mathbf{B}_{2}) &= \sqrt{RD} \; (\alpha_{1} + \alpha_{2})/\sqrt{2} \end{split}$$

- 1-

Dabei bedeutet r die Änderung der X-Y-Bindungslänge aus der Gleichgewichtsanordnung, d die Änderung der Y-Z-Bindungslänge, ϕ die Änderung des Winkels zwischen der X-Y- und der Y-Z-Bindung und α die Änderung des Knicks aus der Ebene der X-Y-Z-Ebenen. Die Gleichgewichtsabstände der Kerne X-Y und Y-Z werden mit R bzw. D bezeichnet. Es werden hierbei die Veränderungen der Winkel mit den Gleichgewichtsabständen R und D multipliziert, um die Dimensionen der mittleren Amplitudenquadrate für Winkeldeformationen und der der gebundenen Atompaare gleichzuhalten.

Die symmetrisierten Matrizen der mittleren Amplitudenquadrate (Σ) in Termen mittlerer Amplitudenquadrate (σ) wurden auf der Grundlage der von *Cyvin*³ dargelegten Prinzipien erhalten, indem wir die genannten Symmetriekoordinaten einführten. Sie ergaben sich wie folgt:

$$\begin{split} & \sum_{11}(\mathbf{A}_1) = \langle \mathbf{S}_1^2 \rangle = \sigma_r + \sigma_{rr} \\ & \sum_{22}(\mathbf{A}_1) = \langle \mathbf{S}_2^2 \rangle = \sigma_d + \sigma_{dd} \\ & \sum_{33}(\mathbf{A}_1) = \langle \mathbf{S}_3^2 \rangle = \sigma_0 \\ & \sum_{44}(\mathbf{A}_1) = \langle \mathbf{S}_4^2 \rangle = \sigma_\Phi + \sigma_{\Phi\Phi} \\ & \sum_{12}(\mathbf{A}_1) = \sum_{21}(\mathbf{A}_1) = \langle \mathbf{S}_1 \, \mathbf{S}_2 \rangle = \sigma_{rd} + \sigma_{rd'} \\ & \sum_{13}(\mathbf{A}_1) = \sum_{31}(\mathbf{A}_1) = \langle \mathbf{S}_1 \, \mathbf{S}_3 \rangle = \sqrt{2} \, \sigma_{r\theta} \\ & \sum_{14}(\mathbf{A}_1) = \sum_{41}(\mathbf{A}_1) = \langle \mathbf{S}_1 \, \mathbf{S}_4 \rangle = \sigma_{r\Phi} + \sigma_{r\Phi'} \\ & \sum_{23}(\mathbf{A}_1) = \sum_{32}(\mathbf{A}_1) = \langle \mathbf{S}_2 \, \mathbf{S}_3 \rangle = \sqrt{2} \, \sigma_{d\theta} \\ & \sum_{24}(\mathbf{A}_1) = \sum_{42}(\mathbf{A}_1) = \langle \mathbf{S}_2 \, \mathbf{S}_4 \rangle = \sigma_{d\Phi} + \sigma_{d\Phi'} \\ & \sum_{34}(\mathbf{A}_1) = \sum_{43}(\mathbf{A}_1) = \langle \mathbf{S}_3 \, \mathbf{S}_4 \rangle = \sqrt{2} \, \sigma_{\theta\Phi} \\ & \sum_{55}(\mathbf{A}_2) = \langle \mathbf{S}_5^2 \rangle = \sigma_{\alpha} - \sigma_{\alpha\alpha} \\ & \sum_{66}(\mathbf{B}_1) = \langle \mathbf{S}_6^2 \rangle = \sigma_r - \sigma_{rr} \\ & \sum_{77}(\mathbf{B}_1) = \langle \mathbf{S}_7^2 \rangle = \sigma_d - \sigma_{dd} \\ & \sum_{88}(\mathbf{B}_1) = \langle \mathbf{S}_8^2 \rangle = \sigma_\Phi - \sigma_{\Phi\Phi} \\ & \sum_{67}(\mathbf{B}_1) = \sum_{87}(\mathbf{B}_1) = \langle \mathbf{S}_6 \, \mathbf{S}_3 \rangle \, \sigma_{r\Phi} - \sigma_{r\Phi'} \\ & \sum_{78}(\mathbf{B}_1) = \sum_{87}(\mathbf{B}_1) = \langle \mathbf{S}_7 \, \mathbf{S}_8 \rangle = \sigma_{d\Phi} - \sigma_{d\Phi'} \\ & \sum_{99}(\mathbf{B}_2) = \langle \mathbf{S}_9^2 \rangle = \sigma_{\alpha} + \sigma_{\alpha\alpha} \end{split}$$

³ S. J. Cyvin, Spectrochim. Acta 15, 828 (1959).

Die oben angegebenen mittleren Schwingungsamplituden lassen sich folgendermaßen durch die internen Koordinaten ausdrücken:

$$\begin{split} \sigma_{r} &= \langle r_{1}^{2} \rangle = \langle r_{2}^{2} \rangle \\ \sigma_{rr} &= \langle r_{1} r_{2} \rangle \\ \sigma_{d} &= \langle d_{1}^{2} \rangle = \langle d_{2}^{2} \rangle \\ \sigma_{dd} &= \langle d_{1} d_{2} \rangle \\ \sigma_{\theta} &= RD \langle \phi_{1}^{2} \rangle = RD \langle \phi_{2}^{2} \rangle \\ \sigma_{\Phi\Phi} &= RD \langle \phi_{1} \phi_{2} \rangle \\ \sigma_{\Phi\Phi} &= RD \langle \phi_{1} \phi_{2} \rangle \\ \sigma_{\alpha} &= RD \langle \alpha_{1}^{2} \rangle = RD \langle \alpha_{2}^{2} \rangle \\ \sigma_{\alpha} &= RD \langle \alpha_{1}^{2} \rangle = RD \langle \alpha_{2}^{2} \rangle \\ \sigma_{rd} &= \langle r_{1} d_{1} \rangle = \langle r_{2} d_{2} \rangle \\ \sigma_{rd} &= \langle r_{1} d_{2} \rangle = \langle r_{2} d_{1} \rangle \\ \sigma_{r\theta} &= R \langle r_{1} \theta \rangle = R \langle r_{2} \theta \rangle \\ \sigma_{r\Phi'} &= \sqrt{RD} \langle r_{1} \phi_{1} \rangle = \sqrt{RD} \langle r_{2} \phi_{2} \rangle \\ \sigma_{d\theta} &= R \langle d_{1} \theta \rangle = R \langle d_{2} \theta \rangle \\ \sigma_{d\theta} &= \sqrt{RD} \langle d_{1} \phi_{1} \rangle = \sqrt{RD} \langle d_{2} \phi_{1} \rangle \\ \sigma_{\theta\Phi} &= \sqrt{RD} \langle d_{1} \phi_{2} \rangle = \sqrt{RD} \langle d_{2} \phi_{1} \rangle \\ \sigma_{\theta\Phi} &= \sqrt{RD} \langle \theta \phi_{1} \rangle = \sqrt{RD} \langle \theta \phi_{2} \rangle \end{split}$$

dabei bedeutet σ_r das durch das bindende Atompaar X - Y, σ_d das durch das bindende Atompaar Y - Z, σ_{θ} das durch die Deformation des Winkels $Y - \widehat{X} - Y$, σ_{Φ} das durch die Deformation des Winkels $X - \widehat{Y} - Z$ und σ_{α} das durch Deformation aus der Ebene hervorgerufene mittlere Amplitudenquadrat. $\sigma_{rr'}$, $\sigma_{dd'}$, $\sigma_{\Phi\Phi}$, $\sigma_{\alpha\alpha}$, σ_{rd} , $\sigma_{r\theta}$, $\sigma_{r\Phi}$, $\sigma_{r\Phi'}$, $\sigma_{d\theta}$, $\sigma_{d\phi}$, $\sigma_{d\phi'}$ und $\sigma_{\theta\Phi}$ sind die Größen für die jeweilige Wechselwirkung auf Grund der Deformationen und der bindenden Atompaare.

Weiters erhielten wir analytische Ausdrücke für die mittleren Amplitudenquadrate σ_p , σ_q , σ_t und σ_s , die den nichtbindenden Atompaaren Y-Y, Z-Z, Y-Z und X-Z entsprechen. Sie stellen sich in Termen der symmetrisierten Matrizen der mittleren Amplitudenquadrate wie folgt dar:

$$egin{aligned} \sigma_p &= 2 \sum_{11} \sin^2{(heta'/2)} + \sum_{33} \cos^2{(heta'/2)} + 2 \sqrt[3]{2} \sum_{13} \sin{(heta'/2)} \cos{(heta'/2)} \ \sigma_q &= 2 \left(\sum_{11} + \sum_{22} + 2 \sum_{12} \right) \sin^2{(heta'/2)} + \sum_{33} \cos^2{(heta'/2)} + \ &+ 2 \sqrt[3]{2} \left(\sum_{13} + \sum_{23} \right) \sin{(heta'/2)} \cos{(heta'/2)} \end{aligned}$$

$$\begin{aligned} \sigma_t &= (1/2) \left(4 \sum_{11} + \sum_{22} + \sum_{77} + 4 \sum_{12} \right) \sin^2 \left(\theta'/2 \right) + \sum_{33} \cos^2 \left(\theta'/2 \right) + \\ &+ \sqrt{2} \left(2 \sum_{13} + \sum_{23} \right) \sin \left(\theta'/2 \right) \cos \left(\theta'/2 \right) \\ \sigma_s &= (1/2) \sum_{11} + (1/2) \sum_{22} + (1/2) \sum_{66} + (1/2) \sum_{77} + \sum_{12} + \sum_{67} \end{aligned}$$

dabei bedeutet θ' den Winkel $Y = \widehat{X} - Y$ in der Gleichgewichtsanordnung.

Anwendung auf die Moleküle B2O3, B2S3 und S(CN)2

Viele Untersuchungen⁴⁻⁶ zeigten, daß der Hauptbestandteil erhitzten Boroxiddampfs aus der freien Molekülart B_2O_3 besteht. White und Mitarbeiter⁷ untersuchten das Infrarotemissionsspektrum und schrieben die drei Hauptbanden einem gewinkelten Modell der Symmetriepunktgruppe C_{2v} zu. Auch Akishin und Spiridonov⁸ kamen auf Grund ihrer Elektronenbeugungsversuche und White und Mitarbeiter⁹ auf Grund ihrer spektroskopischen Untersuchungen in der Gasphase zu der Annahme eines solchen Modells im Gegensatz zu der in früheren Arbeiten^{10, 11} angenommenen bipyramidalen Struktur der Symmetriepunktgruppe D_{3h} . Akishin und Spiridonov¹² bestätigten die Richtigkeit dieses Modells auch für das Molekül B_2S_3 .

Mit den in früheren Arbeiten angegebenen Absorptions- und Reflexionsdaten¹³⁻¹⁶ von B_2O_3 und B_2S_3 führten *Tatevskii*, *Koptev* und *Malt'tsey*¹⁷ eine genaue Normalkoordinaten- und Schwingungsanalyse für zwei isotope Molekülarten durch. Die Grundschwingungen in cm⁻¹ sind in

⁵ M. G. Inghram, R. F. Porter und W. A. Chupka, J. Chem. Physics 25, 498 (1956).

⁶ M. D. Scheer, J. Physic. Chem. 61, 1184 (1957).

⁷ D. White, P. N. Walsh und D. E. Mann, J. Chem. Physics 28, 508 (1958).

⁸ P. A. Akishin und V. P. Spiridonov, Dokl. Akad. Nauk SSSR 131, 557 (1960).

⁹ D. White, D. E. Mann, P. N. Walsh und A. Sommer, J. Chem. Physics **32**, 481 (1960).

¹⁰ V. N. Huff, S. Gordon und V. E. Morrell, Nat. Advis. Comm. for Aeronautics, Report Nr. 1037 (1951).

¹¹ D. A. Dows und R. F. Porter, J. Amer. Chem. Soc. 78, 5165 (1956).

¹² P. A. Akishin und V. P. Spiridonov, Dokl. Akad. Nauk SSSR **129**, 1317 (1959).

¹³ E. P. Markin und N. N. Sobolev, Izvest. Akad. Nauk SSSR, Ser. Fiz. **23**, 62 (1959).

¹⁴ A. A. Mal'tsev und V. M. Tatevskii, Optics and Spectrosc. 10, 295 (1961).

F. T. Greene und J. L. Margrave, J. Amer. Chem. Soc. 81, 5555 (1959).
 A. Sommer, P. N. Walsh und D. White, J. Chem. Physics 33, 296 (1960).

¹⁷ V. M. Tatevskii, G. S. Koptev und A. A. Mal'tsev, Optics and Spectrosc. 11, 391 (1961).

⁴ J. Soulen, P. Sthapitanonda und J. L. Margrave, J. Physic. Chem. 59, 132 (1955).

Tab. 1 angeführt. Schwefeldicyanid wurde erstmals schon von Lassaigne¹⁸ beschrieben und zeigt ein chemisches Verhalten^{19, 20}, das der Formulierung S(CN)₂ entspricht. Aus ihren Dipolmomentuntersuchungen schlossen Rogers und Gross²¹ auf eine gewinkelte Struktur des Schwefeldicyanids. Long und Steele²² untersuchten die Raman- und Infrarotspektren, bestimmten die Grundschwingungen für eine C_{2v}-Symmetrie und berechneten den C—S—C-Winkel zu 141 \pm 5°. Später untersuchten noch Arnold und Mitarbeiter²³ die Rotationsspektren und das Dipolmoment des Schwefeldicyanids und bestätigten eine gewinkelte Anordnung des Moleküls. Kürzlich studierten Pierce und Mitarbeiter²⁴ Mikrowellen- und Infrarotabsorptionsspektren der Verbindung, berechneten verschiedene Molekularkonstanten und schrieben der gewinkelten Struktur die in Tab. 1 angegebenen Grundschwingungen in cm⁻¹ zu.

Schwingungsrasse	Laufnummer	Frequenzen				
		$^{10}\mathrm{B}_{2}\mathrm{O}_{3}$	$^{11}\mathrm{B}_{2}\mathrm{O}_{3}$	$^{10}\mathrm{B}_{2}\mathrm{S}_{3}$	$^{11}\mathrm{B}_{2}\mathrm{S}_{3}$	$S(CN)_2$
$\mathbf{A_1}$	٧1	844	815	425	409	672
	v 2	2084	2015	1359	1306	2190
	٧3	161	160	66	64	135
	٧4	755	749	399	396	378
$\mathbf{A_2}$	٧ő	778	753	374	360	376
B ₁	٧6	938	933	463	461	690
	¥7	2097	2029	1364	1311	2180
	V8	682	658	347	333	328
B_2	٧9	700	673	351	336	372

Tabelle 1. Grundschwingungen in $\rm cm^{-1}$ der Moleküle $\rm B_2O_3,~B_2S_3$ und $\rm S(CN)_2$

Zur Lösung der Säkulargleichungen übernahmen wir in dieser Arbeit die von Cyvin³ geforderte Grundgleichung $|\Sigma G^{-1} - E \Delta| = 0$, wobei Δ mit der Normalfrequenz v wie folgt verknüpft ist:

$$\Delta_i = (\hbar/8 \; \pi^2 \; \mathsf{v}_i) \; \coth\left(rac{\hbar \, \mathsf{v}_i}{2 \, k \, T}
ight).$$

Dabei bedeutet Σ die symmetrisierten Matrizen der mittleren Amplitudenquadrate, G die der kinetischen Energie und E die

¹⁸ J. L. Lassaigne, Ann. Chim. Phys. 39, 197 (1828).

¹⁹ H. E. Williams, "Cyanogen Compounds", Arnold, London (1948).

²⁰ M. Goehring, Ber. dtsch. chem. Ges. **76 B**, 742 (1943).

²¹ M. T. Rogers und K. J. Gross, J. Amer. Chem. Soc. 74, 5294 (1952).

²² D. A. Long und D. Steele, Spectrochim. Acta 19, 1731 (1963).

²³ W. Arnold, H. Dreizler und H. D. Rudolph, Z. Naturforsch. 19a, 1428 (1964).

²⁴ L. Pierce, R. Nelson und C. Thomas, J. Chem. Physics 43, 3423 (1965).

Einheitsmatrix. h ist die Plancksche, k die Boltzmannsche Konstante und T die absolute Temperatur. In Übereinstimmung mit den Elektronenbeugungs- und Mikrowellenuntersuchungen^{8, 12, 24} wurden in den Berechnungen die folgenden Werte für die Molekularstruktur verwendet: B=0 = 1.20 Å, B=0 = 1.36 Å, $B=0 = 95^{\circ}$ und $0=\widehat{B}=0 = 180^{\circ}$ in B₂O₃; B=S = 1.65 Å, B-S = 1.81 Å, B- \widehat{S} -B = 96° und S- \widehat{B} =S = = 180° in B₂S₃; C = N = 1.156 Å, C—S = 1.701 Å, C— \hat{S} —C = 98°22′ und S- $\widehat{C} \equiv N = 180^{\circ}$ in S(CN)₂. Mit Hilfe der Schwingungsfrequenzen in cm⁻¹ aus Tab. 1, der oben gegebenen Daten der Molekularstruktur der symmetrisierten Matrizen der mittleren Amplitudenquadrate und der Matrizen der kinetischen Energie wurden für alle drei Moleküle die Säkulargleichungen bei Raumtemperatur konstruiert. Sie geben die Normalschwingungen in Termen der mittleren Amplitudenquadrate. Die Matrizen der kinetischen Energie für die Rechnungen wurden nach der theoretischen Methode der Wilsongruppe mit Hilfe der Symmetriekoordinaten²⁵ erhalten. Da die Säkulargleichungen bei den Schwingungsrassen A2 und B2 singulär sind, konnten die symmetrisierten Matrizen der mittleren Schwingungsamplituden Σ_{55} und Σ_{99} für Raumtemperatur direkt erhalten werden. Da aber die Anzahl der symmetrisierten Matrizen der mittleren Amplitudenquadrate größer ist als die Anzahl der Grundfrequenzen der Schwingungsrassen A1 und B1, ist es nicht möglich, sie alle eindeutig zu lösen. Daher wurden, um eine eindeutige Lösung zu erhalten und die Rechnung zu vereinfachen, die nichtdiagonalen Elemente vernachlässigt. Um die Gültigkeit dieser Ergebnisse zu sichern, wurden solche Rechnungen mehrmals wiederholt. Weiters erleichterten die Frequenzen der isotopen Borverbindungen diese Berechnungen. Die für die symmetrisierten Matrizen der mittleren Amplitudenquadrate erhaltenen Werte in Å² sind von allen drei untersuchten Verbindungen in Tab. 2 zusammengestellt. Aus den Matrizen wurden die mittleren Amplitudenquadrate, und zwar auch die der nichtgebundenen Atompaare, bei Zimmertemperatur ermittelt. Die Werte in Å² sind in Tab. 3 angegeben. Tab. 4 enthält die entsprechenden berechneten Werte der mittleren Schwingungsamplituden in Å für gebundene und nichtgebundene Atompaare bei Zimmertemperatur. Für keines der drei Moleküle stehen experimentelle Werte aus der Elektronenbeugung zum Vergleich zur Verfügung.

Die Werte der mittleren Amplitudenquadrate des B₂S₃-Moleküls sind im allgemeinen größer als die des B₂O₃. Die durch die B $-\widehat{O}$ -Bund B $-\widehat{S}$ -B-Winkeldeformation hervorgerufenen Größen sind kleiner

²⁵ E. B. Wilson, Jr., J. Chem. Physics 7, 1047 (1939); 9, 76 (1941).

Element	Symm. Matrizen der mittl. Amplitudenquadrate			
	B_2O_3	B_2S_3	S(CN) ₂	
Σ_{11}	0,0023979	0,0028714	0,0020248	
Σ_{22}	0,0017495	0,0024152	0,0015030	
Σ_{33}	0,0045346	0,0087589	0,0051646	
Σ_{44}	0,0076386	0,0092446	0,0101024	
Σ_{55}	0,0072710	0,0096956	0,0148388	
Σ_{66}	0,0025471	0,0031970	0,0023553	
Σ_{77}	0,0018642	0,0026519	0,0012054	
Σ_{88}	0,0055389	0,0064548	0,0090328	
Σ_{99}	0,0084010	0,0108462	0.0152988	

Tabelle 2. Symmetrisierte Matrizen der mittleren Amplitudenquadrate in Å² für die Moleküle B₂O₃, B₂S₃ und S(CN)₂ bei Zimmertemperatur

Tabelle 3. Mittlere Amplitudenquadrate in Å² der Moleküle B₂O₃, B₂S₃ und S(CN)₂ bei Zimmertemperatur

	Mittlere Amplitudenquadrate			
	B_2O_3	B_2S_3	S(CN) ₂	
σ_r	0,0024725	0,0030342	0,0021901	
σ_{rr}	-0,0000746		0,0001653	
σ_d	0,0018069	0,0025336	0,0013542	
σ_{dd}	-0,0000574		-0,0001488	
σ_{θ}	0,0045346	0,0087589	0,0051646	
σ_{Φ}	0,0065888	0,0078497	0,0095676	
$\sigma_{\Phi\Phi}$	0,0010499	0,0013949	0,0005348	
σα	0,0078360	0,0102709	0,0150678	
$\sigma_{\alpha\alpha}$	0,0005650	0,0005753	0,0002299	
σ_p	0,0045321	0,0069412	0,0045260	
σ_q	0,0047985	0,0077039	0,0062477	
σ_t^-	0,0046964	0,0073880	0,0053016	
σ_s	0,0028550	0.0039776	0.00363443	

Tabelle 4. Mittlere Schwingungsamplituden (in Å) für die Moleküle B₂O₃, B₂S₃ und S(CN)₂ bei Zimmertemperatur

	Mittlere Schwingungsamplituden			
	B_2O_3	B_2S_3	$S(CN)_2$	
X - Y	0,0497	0,0551	0,0468	
Y— Z	0,0425	0,0503	0,0368	
Y - Y	0,0673	0,0833	0,0673	
Z— Z	0,0693	0,0878	0,0791	
Y— Z	0,0685	0,0860	0,0728	
X - Y	0,0534	0,0631	0,0603	

als die durch die Deformation der Winkel O- $\widehat{B}=O$ und S- $\widehat{B}=S$ verursachten. Der Grund dafür dürfte in der großen Differenz (nahezu auf das Doppelte) der Winkel und der Umstellung der Atome mit verschiedenen Elektronenverteilungen liegen. Wie zu erwarten, ist der Wert für die Schwingungen aus der Ebene bei allen drei Molekülen beträchtlich größer als die restlichen Größen. Die vier mittleren Quadrate der Wechselwirkungen σ_{rr} , σ_{dd} , $\sigma_{\Phi\Phi}$ und $\sigma_{\alpha\alpha}$ sind sehr klein, einige von ihnen vernachlässigbar. Die Werte für nichtgebundene Atompaare sind im allgemeinen größer als die der entsprechenden nichtgebundenen Atompaare. Die mittleren Schwingungsamplituden der Abstände B-O und B-S sind im Gegensatz zu den entsprechenden Kraftkonstanten größer als die von B=0 und B=S, wie schon früher berichtet wurde¹⁷. Im allgemeinen ist die mittlere Schwingungsamplitude um so größer, je größer der Abstand zwischen den Atomen ist, egal, ob sie gebunden sind oder nicht. Obwohl die Ergebnisse von Elektronenbeugungsversuchen an den Molekülen B₂O₃ und B₂S₃ veröffentlicht wurden^{8, 12}, fanden sich keine Angaben über die Schwingungsamplituden der gebundenen und nichtgebundenen Atompaare, so daß ein Vergleich mit den in dieser Arbeit gefundenen Werten nicht möglich war. Der für die C-S-Bindung gefundene Wert stimmt gut mit dem für die C-S-Bindung im Trithiocarbonation²⁶ gefundenen Wert (0,0461 Å) überein. Für die $C \equiv N$ -Bindung fanden wir einen etwas höheren Wert als den für diese Bindung in den Verbindungen Dicvandiacetylen²⁷, Kohlenstoffsubnitrid²⁸ Acetylen²⁹, Blausäure und Cyanation angegebenen, aber die Abweichung ist nicht groß. Die geringen Unterschiede, die sich gegenüber unserem Wert ergeben, dürften eine Folge der verschiedenen Orientierungen, Konfigurationen und Elektronenverteilungen der gesamten Molekular- bzw. Ionensysteme sein. Die Ergebnisse unserer vorliegenden Untersuchungen dürften von großem Nutzen bei der Interpretation von zukünftigen Untersuchungen der Elektronenbeugung in der Gasphase sein.

Thermodynamische Funktionen

Mit Hilfe der in Tab. 1 angegebenen Schwingungsfrequenzen und der Daten der Molekularstruktur^{8, 12, 24} wurden für den Temperaturbereich 200 bis 2000° K die molaren thermodynamischen Funktionen, nämlich die Enthalpie, die Freie Enthalpie, die Entropie und die Mol-

²⁶ G. Nagarajan und A. Müller, Z. Naturforsch. 21b, 393 (1966).

²⁷ G. Nagarajan und J. R. Durig, Bull. Soc. Roy. Sci. Liège, in press.

²⁸ G. Nagarajan, E. R. Lippincott und J. M. Stutman, Z. Naturforsch. 20a, 786 (1965).

²⁹ S. J. Cyvin und E. Meisingseth, Acta Chem. Scand. 15, 1289 (1961).

³⁰ S. J. Cyvin, Acta Polytech. Scand. Ph. No. 6 (279/1960).

³¹ G. Nagarajan und T. A. Hariharan, Acta Phys. Austr. 19, 349 (1965).

wärme, des Schwefeldicyanidmoleküls berechnet. Für die beiden anderen Moleküle sind derartige Berechnungen bereits durchgeführt worden³². Den Berechnungen wurde das Modell eines starren Rotators und harmonischen Oszillators zugrunde gelegt und die Werte für ein Gas im thermodynamischen Standardzustand eines Gases der Fugazität Eins berechnet. Wir verwendeten die Standardformeln und Funktionstafeln für den harmonischen Oszillator von *Pitzer*³³. Die Hauptträgheitsmomente für diese Berechnungen erhielten wir aus den Mikrowellenangaben²⁴. Die Werte sind

$$\begin{split} I_{\rm A} &= 49,0163 \; {\rm AME} \; {\rm \AA}^2 \; (81,4224 \cdot 10^{-40} \; {\rm g/cm}^2) \\ I_{\rm B} &= 178,2869 \; {\rm AME} \; {\rm \AA}^2 \; (296,1579 \cdot 10^{-40} \; {\rm g/cm}^2) \\ I_{\rm C} &= 227,7902 \; {\rm AME} \; {\rm \AA}^2 \; (378,3891 \cdot 10^{-40} \; {\rm g/cm}^2). \end{split}$$

Für die Berechnungen wurden eine Symmetriezahl von 2, der Singulett-Grundzustand für die Elektronen und chemische Atomgewichte an-

Tabelle 5. Enthalpie, Freie Enthalpie, Entropie und Wärmekapazitäten von Schwefeldicyanid im idealen Gaszustand bei einer Atmosphäre Druck

<i>T</i> , °K	$(H_0 - H^\circ)/T$	$-(F_0-H^\circ)/T$	S°	C_p°
200	12,219	55,208	67,427	16,719
273, 16	12,353	57,897	70,250	17.262
298,16	12,791	59,001	71,792	17,800
300	12,824	59,075	71,899	17,842
400	14,274	62,958	77,232	19,360
500	15,399	66,277	81,676	20,372
600	16,304	69,191	85,495	21,169
700	17,044	71,743	88,787	21,808
800	17,679	74,095	91,774	22,362
900	18,230	76,180	94,410	22,832
1000	18,714	78,193	96,907	23,218
1100	19,128	79,895	99,023	23,550
1200	19,515	81,663	101,178	23,824
1300	19,855	83,184	103,039	24,063
1400	20,150	84,617	104,767	24,256
1500	20,436	86,040	106,476	24,427
1600	20,841	87,958	108,799	24,600
1700	20,932	88,731	109,663	24,700
1800	21,072	89,774	110,846	24,743
1900	21,334	91,050	112,384	24,897
2000	21,862	95,872	117,734	25,002

(Alle Größen in cal · grad⁻¹ Mol⁻¹)

³² G. Nagarajan, Z. Physik. Chem. 223, 27 (1963).

³³ K. S. Pitzer, "Quantum Chemistry", Prentice-Hall, Inc., New York (1953).

190 G. Nagarajan: Schwingungsamplituden für ein $X(YZ)_2$ -Molekülmodell

genommen. Vernachlässigt wurden die Beiträge durch zentrifugale Verformung, isotope Mischungen, Kernspins und Wechselwirkung zwischen Schwingungen und Rotation, weil diese Beiträge zum Gesamtwert der Funktionen vernachlässigbar klein sind. Die berechneten Werte aller vier Funktionen sind in Tab. 5 zusammengestellt. Kalorimetrische Messungen, die einen Vergleich mit den in dieser Arbeit erhaltenen Werten ermöglichen würden, liegen nicht vor. Auf jeden Fall dürften die vorliegenden Ergebnisse sehr nützlich sein für die Interpretation von experimentellen Werten der Entropien und Wärmekapazitäten im idealen Gaszustand.